Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Bedside Diagnosis. Morosini’s Syndrome.

Sergio Stagnaro*
Simone Caramel**

Introduction

Arrhythmogenic Right Ventricular Dysplasia (ARVD), also termed Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), is right ventricle myocardial disorder, whose causes are unknown, showing a frequent familial occurrence (1-5). The typical clinical manifestation consists of ventricular arrhythmias with a left bundle branch block (LBBB) pattern that occur predominantly in young adults. ARVD may result in sudden death, which occurs in up to 80% of diseased individuals. Other manifestations are electrocardiographic repolarization and depolarization changes (epsilon wave in lead V2 and an inversion of T waves in precordial leads V1-V3, frequent premature ventricular complexes (PVCs), ventricular tachycardia (VT), ventricular fibrillation (VF),), structural abnormalities that range from subtle wall aneurysms within the so-called “triangle of dysplasia” to biventricular regional or global dysfunction, and localized or widespread fibro-fatty infiltration of the right ventricular myocardium. Till now, the diagnosis of ARVD/C is difficult, and based on the presence of major and minor criteria encompassing genetic, electrocardiographic, pathophysiologic, and histopathologic factors. The imaging modalities used to evaluate right ventricular abnormalities include conventional angiography, echocardiography, radionuclide angiography, ultrafast computed tomography, and magnetic resonance (MR) imaging. Among these techniques, MR imaging allows the clearest visualization of the heart.

Morosini’s Syndrome

From the above remarks, it appears clears that in the majority of cases the right diagnosis of ARVD/C results nowadays after patient’s death, with autopsy data. Thanks to Quantum Biophysical Semeiots, physicians are nowadays able to bedside recognise ARVD/C at individual’s birth. In following, the QBS method, termed Morosini’s Syndrome, is briefly described.

First, physician has to ascertain Caotino’s Sign (6-14), showing in one second the presence of inherited heart disorder (Fig. 1 – Fig. 2). From the practical point of view, physician applies an “intense” digital pressure upon the heart projection area, i.e., precordium (6).

In health, “simultaneously”, due to no-local realm, the gastric aspecific Reflex does not appear at all; Aspecific Gastric Reflex: in the stomach both fundus and body dilate, while antral pyloric region contracts, as Fig. 3 indicates.
Heart Aspecific Gastric Reflex (H.A.G.R.)

intense digital pression on precordium – Caotino sign

If Caotino’s Sign is negative at base assessment, we suggest to ascertain it under stress tests, as Apnoea Test, aiming to detect “latent, variant” form of CAD Inherited Real Risk.

Figure 2
Gastric aspecific Reflex: in the stomach both fundus and body dilate, while antral pyloric region contracts.

On the contrary, in pathological situations, enlisted in Figure 4, “simultaneously” with the beginning of “intense” digital pressure stimulation, gastric aspecific Reflex appears, showing an intensity in cm., related to the seriousness of underlying heart disorder.

<table>
<thead>
<tr>
<th>Caotino’s Sign: Significances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) CAD Inherited Real Risk (90%)</td>
</tr>
<tr>
<td>2) Arritmogenic QBS Constitution, ARVD/C, …</td>
</tr>
<tr>
<td>3) Inter-Atrial and -Ventricular Forum Pervium</td>
</tr>
<tr>
<td>4) Diverse Valve Abnormality</td>
</tr>
<tr>
<td>5) Pericardium Disorders</td>
</tr>
<tr>
<td>6) Aneurism of Valsalva’ Sinus IIIa + v …</td>
</tr>
<tr>
<td>7) AMI Outcome (tl 2 sec.; Int. ≥ 1 <3 cm.)</td>
</tr>
<tr>
<td>8) Coronary Stent and other Devices (latency tyme 3 sec.; Intensity ≥ 3 cm.)</td>
</tr>
</tbody>
</table>

And so on.

In Figure 4 are summarised the significances of Caotino’s Sign. In 90% of all cases it indicates the presence of CAD Inherited Real Risk.

Second, physician has to assess parameter values of heart-aspecific gastric Reflex (6-7).

In health (Figure 5), digital pressure of “mean” intensity, applied upon right (and left) atrium and ventricle skin projection area, brings about aspecific gastric Reflex after a latency time of 8 sec.
exactly, showing a duration of >3 sec. <4 sec., indicating a physiological local Microcirculatory Functional Reserve (6-18).

On the contrary, in diseased individual, involved by ARVD/C latency time appears either normal ($NN = 8$ sec.; NN stands for normal basal value) or shorter in inverse relation to the seriousness of underlying heart disorder. Importantly, the reflex duration results 4 sec. or more ($NN < 4$ sec.), indicating the impairment of Microcirculatory Functional Reserve of right atrium and right ventricle (6, 7, 11, 13).

Third, this manoeuvre plays a key role in bedside recognising heritable alteration of the free wall of the right ventricle, with fibro-fatty replacement of the right ventricular myocardium, where is a partial or near-complete substitution of myocardium with fatty tissue and ventricle enlargement. It involves predominantly the apical and infundibular regions of the RV. The left ventricle and ventricular septum are usually spared.

QBS signs, analogously to those we have described in Takо-Tsubo cardiomyopathy (18), are really characteristic and useful regarding ARVD/C diagnosis.

In health, “intense” digital pressure upon a large artery (e.g., femoral artery at groin, sympathetic hypertonia) does not cause “simultaneously” enlargement of right atrium and ventricle.

On the contrary, in patients involved by ARVD/C, starting from the birth, under the identical experimental condition, above illustrated, physician observes “simultaneously” a significant increasing of right atrium and ventricle size by means of heart auscultatory percussion.

Only physicians skilled in Quantum Biophysical Semeiotics and Clinical Microangiology (www.semeioticabiofisica.it) are able to assess both vasomotility and vasomotion of coronary micro-vessels and coronary artery autonomous-autoctonus oscillations of well localised areas.
Conclusion.

Standardized diagnostic criteria have been proposed by the Study Group on ARVD/C of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology (19). Until now, notoriously, the diagnosis of ARVD/C is based on presence of major and minor criteria that encompass structural, histologic, electrocardiographic, arrhythmic, and genetic factors. On the basis of this classification, diagnosis of ARVD/C is fulfilled in the presence of 2 major criteria, or 1 major plus 2 minor criteria, or 4 minor criteria from different groups. There is a general agreement that, although these guidelines represent a useful clinical approach to ARVD/C diagnosis, optimal assessment of diagnostic criteria requires prospective evaluation obtained by international registry from a large population (20). The phenotype of ARVD/C is probably broader than has been recognized to date, and minor electrocardiographic or RV structural abnormalities that overlap with normality may represent disease expression, particularly in context of proven disease within families (21).

To carry to End unexpected deaths brought about by ARVD/C, physicians need a clinical tool, reliable, easy to apply, not expensive and able to be used repeatedly in therapeutic monitoring on very large scale. The QBS method illustrated in this brief paper, termed as Morosini’s Syndrome, is certainly paramount, as regards the bedside diagnosing ARVD/C since individual’s birth.

Sergio Stagnaro*
Via Erasmo Piaggio, 23/8 – Riva Trigoso - Genova
email dottsergio@semeioticabiofisica.it

Simone Caramel **
Via Doberdò, 3 – Fontane di Villorba - Treviso
email simonecaramel@yahoo.it
References.

13) Stagnaro Sergio. Role of Coronary Endoarterial Blocking Devices in Myocardial
Preconditioning - c007i. Lecture, V Virtual International Congress of Cardiology.
http://www.fac.org.ar/qcvc/llave/c007i/stagnaros.php

14) Stagnaro Sergio. CAD Inherited Real Risk, Based on Newborn-Pathological, Type I, Subtype B, Aspecific, Coronary Endoarteriolar Blocking Devices. Diagnostic Role of Myocardial Oxygenation and Biophysical-Semeiotic Preconditioning. www.athero.org, 29 April, 2009
http://www.athero.org/commentaries/comm907.asp

